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Abstract

In this paper we consider the optimization of the shape of a cavity that intrudes into a solid conducting wall. This

intrusion may be regarded as a ‘‘negative fin’’, i.e., the outside-in version of a conductive fin the shape of which is to be

optimized. The objective is to minimize the global thermal resistance between the solid and the cavity. The cavity is

rectangular, with fixed volume and variable aspect ratio. The cavity shape is optimized for two sets of thermal con-

ditions for the solid wall: uniform heat generation, and uniform heat flux on the outer surfaces of the solid wall. The

optimized cavity shape is practically independent of the thermal conditions. The cavity shape is optimal when it

penetrates the conducting wall completely. In the second part of the paper we optimized a more complex intrusion: a

cavity shaped as a T. The performance of the T-shaped cavity is superior to that of the finger-shaped cavity optimized in

the first part of the paper.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Constructal theory and design [1] serves as a re-

minder that flow systems that must be designed (con-

figured) must be treated as malleable, i.e., as morphing

structures that are as free to change as possible. Con-

figurations that are postulated (assumed) based on past

practice, handbooks and rules of thumb, are not neces-

sarily the best. The only rule of thumb worth remem-

bering is that geometry must not be taken for granted.

Geometry matters, in fact, geometry is the result, not an

assumption. It is geometry that endows the flow system

with the ability to serve its purpose, in spite of the

constraints.

The field of heat transfer has demonstrated for many

years how the principle of generating flow geometry
* Corresponding author. Tel.: +39-05120-93292; fax: +39-

05120-93296.

E-mail address: cesare.biserni@unibo.it (C. Biserni).

0017-9310/$ - see front matter � 2004 Elsevier Ltd. All rights reserv

doi:10.1016/j.ijheatmasstransfer.2003.12.018
works. The oldest and most clear illustrations are the

optimization of solid wall features known as extended

surfaces, or fins. The most recent treatise on this subject

[2] recounts not only the optimization of the shapes of

individual fins, but also the optimization of the archi-

tecture of assemblies of fins, e.g., finned heat sinks, bu-

shes and trees of fins, as well as leaf-like fins with toothy

edges [3]. Many more examples are found in the growing

volume of techniques for the cooling of compact and

miniaturized packages of electronics [4–6].

In this paper we consider the constructal design of

another, equally basic feature of a solid wall with heat

transfer: the open cavity. This is the ‘‘negative fin’’, or

the outside-in version of the solid fin geometry. It is as

basic as the solid fin itself, because it is found in prac-

tically every domain where augmentation and com-

pactness (high density) of heat transfer are required.

For example, open cavities are the regions formed

between adjacent fins. If the optimization of the geo-

metry of the individual fin is an important issue, then,

certainly, the geometry of the interstices must also be
ed.
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Nomenclature

A area, A ¼ HL, m2

D0 elemental thickness, m

D1 stem thickness, m

H height, m

H0 cavity height, m

j mesh index

k solid thermal conductivity, Wm�1 K�1

L length, m

L0 elemental length, m

L1 stem length, m

Nx;y number of grid points

q heat current, W

q00 heat flux, Wm�2

q000 heat generation rate per unit volume, Wm�3

T temperature, K

V volume, m3

V0 cavity volume, m3

W width, m

x, y cartesian coordinates, m

Greek symbols

/ volume fraction occupied by the cavity

w volume fraction occupied by the rectangular

territory defined by the T-shaped structure

Superscripts

(~) dimensionless variables, Eqs. (5)–(7)

(^) dimensionless variable, Eq. (13)

Subscripts

max maximum

min minimum

opt optimum

ref reference
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important. Open cavities are essential promoters of

nucleate boiling and condensation: see, for example, the

vapotron effect [7–13]. Open cavities are important

morphological features in physiology. The alveolus of

the lung is a very good example, where the relatively

robust (not slender) shape of the cavity has been noted

and attributed intuitively to the natural constructal

optimization principle (Ref. [1], p. 102).

In this paper we consider the optimization of the

cavity shape in the most fundamental sense, without

application to a particular device or field. We rely on the

constructal method: the cavity shape is free to change

subject to volume constraints, and in the pursuit of

maximal global performance. The global performance

indicator is the overall thermal resistance between the

volume of the entire system (cavity and solid) and the

surroundings. For simplicity and clarity, we consider

two-dimensional geometries where the overall volume

and the cavity volume are rectangles with variable geo-

metric aspect ratios.
Fig. 1. Isothermal lateral intrusion into a two-dimensional

conducting body with uniform heat generation.

2. Body with heat generation

Consider the two-dimensional C-shaped conducting

body shown in Fig. 1. The external dimensions (H ; L)
vary. The third dimension, W , is perpendicular to the

plane of the figure. The total volume occupied by this

body is fixed,

V ¼ HLW ð1Þ

Alternatively, the area A ¼ HL is fixed. The dimensions of

the cavity (H0; L0) also vary. The cavity volume is fixed,
V0 ¼ H0L0W ð2Þ

The constant volume constraint is justified in many

applications: the cost of material and the weight and

space of the heat transfer device make this constraint

indispensable in design work. In constructal design, this

constraint is part of the mechanism of generating the

optimal geometric form that fills a given space. This



Table 1

Numerical tests showing the achievement of grid independence

(H=L ¼ 1, / ¼ 0:1, H0=L0 ¼ 0:4)

Nx Ny
eTmax jðeT j

max � eT jþ1
maxÞ=eT j

maxj
17 17 0.218845 2.17026· 10�3

33 33 0.219320 8.49444· 10�4

65 65 0.219506 3.33977· 10�4

129 129 0.219579
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constraint may be replaced by the statement that the

volume fraction occupied by the cavity is fixed,

/ ¼ V0
V

¼ H0L0

HL
ð3Þ

The solid is isotropic with the constant thermal

conductivity k. It generates heat uniformly at the volu-

metric rate q000 (W/m3). The outer surfaces of the heat

generating body are perfectly insulated. The generated

heat current (q000A) is removed by cooling the wall of the

cavity. The cavity wall temperature is maintained at Tmin.

Temperatures in the solid are higher than Tmin. The

highest temperatures (the ‘‘hot spots’’) are registered at

points on the adiabatic perimeter, for example, in the

two corners indicated with Tmax in Fig. 1.

The isothermal cavity wall assumption is made for

simplicity in demonstrating the construction of optimal

cavity shape. This assumption means that the heat

transfer coefficient on the internal (exposed) surface of

the cavity is sufficiently large, so that wall conduction

poses a larger thermal resistance than convection. This

assumption can be relaxed in future applications of this

construction method, as is discussed later in Section 6.

In a more realistic model, the cavity wall temperature

and heat flux would be related, and the wall temperature

distribution would vary with the shape of the cavity.

An important thermal design constraint is the

requirement that temperatures must not exceed a certain

level. This makes Tmax a constraint. The design also calls

for installing a maximum of heat generation rate in the

fixed volume, which corresponds to packing the most

electronics into a device of fixed size. In the present

problem statement, this design objective is represented

by the maximization of the global thermal conductance

q000A=ðTmax � TminÞ, or by the minimization of the global

thermal resistance ðTmax � TminÞ=ðq000AÞ.
The numerical optimization of geometry consisted of

simulating the temperature field in a large number of

configurations, calculating the global thermal resistance

for each configuration, and selecting the configuration

with the smallest global resistance. Symmetry allowed us

to perform calculations in only half of the domain,

yP 0. The conduction equation for the solid region is

o2eT
o~x2

þ o2eT
o~y2

þ 1 ¼ 0 ð4Þ
Table 2

Comparison between the results obtained using the FIDAP package

(H=L ¼ 1, / ¼ 0:3)

H0=L0
eTmax (FIDAP) eTmax (MATL

1.875 0.1873 0.1873

1.2 0.1436 0.1435

0.8334 0.10865 0.1086

0.4686 0.06574 0.0657
where the dimensionless variables are

eT ¼ T � Tmin

q000A=k
ð5Þ

~x; ~y; eH ; eL; eH0; eL0

� �
¼ x; y;H ; L;H0; L0ð Þ

A1=2
ð6Þ

The boundary conditions are indicated in Fig. 1. The

maximal excess temperature, eTmax, is also the dimen-

sionless global thermal resistance of the construct,

eTmax ¼
Tmax � Tmin

q000A=k
ð7Þ

It is not possible to express the global objective functioneTmax in analytical form, in terms of the geometric

parameters of the cavity. This function can be deter-

mined numerically, by solving for the temperature field

in every assumed configuration, and the calculating eTmax

to see whether eTmax can be minimized by varying the

configuration.

Eq. (4) was solved using a finite elements code [14]

based on quadrilateral elements and biquadratic inter-

polation functions. The grid was uniform in both ~x and ~y,
and varied from one geometry to the next. The appro-

priate mesh size was determined by successive refine-

ments, until the further doubling of the number of grid

points in both directions (Nx;Ny) satisfied the criterion

jðeT j
max � eT jþ1

maxÞ=eT j
maxj < 5� 10�4. Here eT j

max represents

the maximum temperature calculated using the current

mesh size, and eT jþ1
max corresponds to the next mesh, where

Nx and Ny were doubled. Table 1 gives an example of how

grid independence was achieved. The following results

were obtained by using Nx ¼ 65 and Ny ¼ 65.

The accuracy of these numerical results were tested

by solving Eq. (4) using the MATLAB partial-differen-

tial-equations (pde) toolbox [15], and comparing the

results with those using the FIDAP package. Table 2
and the MATLAB partial-differential-equations (pde) toolbox

AB) pde) jðeT FIDAP
max � eT MATLAB

max Þ=eT FIDAP
max j

0

6.964· 10�4

4.602· 10�4

6.085· 10�4
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shows this comparison for several values of H0=L0. The

two sets of results agree within 0.07%.
3. Optimization of geometry

We solved the conduction problem in many config-

urations (H=L;H0=L0;/). Fig. 2 shows that the thermal

resistance can be minimized by selecting the shape of the

cavity. The thermal resistance decreases when the vol-

ume fraction (/) occupied by the cavity increases. This

conclusion is confirmed in Fig. 3, where the minimal

global thermal resistance is shown as a function of the

relative size of the cavity, /. The optimal shape of the

cavity is also reported.
Fig. 3. The optimized geometry and performance when the

external shape is square.

Fig. 2. The minimization of the global thermal resistance when

the external shape of the heat generating body is fixed.
The second level of the numerical optimization

scheme consisted of repeating the preceding work (Figs.

2 and 3) for many values of the second shape parameter,

H=L. The most important finding is that an optimal H=L
ratio does not exist, i.e., the geometry of Fig. 1 can be

optimized only with respect to one degree of freedom.

Fig. 4 shows why a second optimization opportunity

does not exist: the global resistance minimized with re-

spect to H0=L0 varies monotonically with H=L. When /
is sufficiently small, ðeTmaxÞmin is proportional to H=L,
and the effect of / on this proportionality vanishes.

Performance improves as the external shape becomes

slender (H � L), and as the volume occupied by the

lateral intrusion (/) increases.
The optimized intrusion shape that corresponds to

Fig. 4 is shown in Fig. 5. The optimized internal shape
Fig. 4. The effect of the external shape H=L on the global

thermal resistance minimized as in Fig. 2.

Fig. 5. The optimal shape of the lateral intrusion, as a function

of H=L and /.
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parameter ðH0=L0Þopt is approximately proportional to

the assumed external shape H=L, and increases with /.
These observations are the basis for constructing Fig. 6,

which shows that when / is small the effect of H=L and

/ on ðH0=L0Þopt can be correlated approximately as

H0

L0

� �
opt

ffi /
H
L

ð8Þ

We return to this observation in Section 5.

We confirmed the validity of the results of Figs. 4–6

by reversing the order in which we varied the two shape

parameters during the search for the lowest eTmax. In

other words, contrary to Figs. 4–6, we began with

holding H0=L0 fixed and varying H=L. This first level

also resulted in an optimal H/L. Fig. 7 shows that the

minimal global thermal resistance and the optimal
Fig. 6. Correlation of the optimal shape results of Fig. 5.

Fig. 7. The optimized geometry and performance when the

internal shape is square.
external shape of the conducting wall decrease when the

volume fraction / increases. At the second level of

numerical work, we repeated the first-level calculations

for many values of H0=L0. In this way we found that

H0=L0 can be optimized, and that when /P 0:3 the re-

sults are approximately the same as in Figs. 4–6. Fig. 8

shows a comparison between the two cases, ðH=LÞfixed
and ðH0=L0Þfixed. The minimized global resistance is

practically the same as in Fig. 4, especially when / is

greater than 0.1. When / is smaller than 0.1, and when

H=L > 0:5 the minimized global resistance is larger

when H0=L0 is fixed than when H=L is fixed. Fig. 9

confirms that ðH=LÞopt and ðH0=L0Þopt are essentially the

same for the two ways in which they are calculated,

provided that H=L is below 0.5.
Fig. 8. The effect of the external shape H=L on the global

thermal resistance minimized for constant H=L.

Fig. 9. The optimal shape obtained by holding H=L fixed,

versus the optimal shape obtained by holding H0=L0 fixed.
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4. Body heated externally

It is important to test the robustness of the optimized

geometry. For example, is the optimal cavity shape

sensitive to changes in how the solid body is heated? We

explored this idea by using the heating arrangement

shown in Fig. 10, and by repeating the two-level opti-

mization documented in Figs. 2–6. The conducting body

is heated with uniform heat flux (q00) over that portion of

its periphery that does not come into direct contact with

the Tmin surface of the cavity. The body does not gen-

erate heat volumetrically. The total heat current is fixed,

q ¼ q00ðH þ 2LÞW ð9Þ
The volume constraints (1) and (3) continue to apply.

Lengths continue to be nondimensionalized based on

A1=2, Eq. (6). The imposed heat current, Eq. (9), means

that the heat flux q00 varies as the external shape ( eH ; eL)
varies,

q00 ¼ q00refeH þ 2eL ð10Þ

The reference heat flux is fixed because it is based on the

total heat current, which is fixed,

q00ref ¼
q

A1=2W
ð11Þ

The conduction equation for points in the solid is

o2bT
o~x2

þ o2bT
o~y2

¼ 0 ð12Þ
Fig. 10. Body with lateral intrusion and uniform heat flux on a

portion of its external surface.
where bT is the new dimensionless temperature

bT ¼ T � Tmin

q00refA1=2=k
ð13Þ

The boundary conditions are indicated in Fig. 10,

namely, bT ¼ 0 on the internal surfaces, and obT =o~x ¼ 0

on the shaded portions of the ~x ¼ eL boundary. On the

~x ¼ 0 face, the boundary condition q00 ¼ �kðoT=oxÞ0
becomes

� obT
o~x

¼ 1eH þ 2eL ð14Þ

Similarly, the uniform-q00 condition on the top side

(~y ¼ eH =2) reads

obT
o~y

¼ 1eH þ 2eL ð15Þ

The remaining boundary condition is obT =o~y ¼ 0 at

~y ¼ 0, or obT =o~y ¼ �1=ð eH þ 2eLÞ at ~y ¼ � eH =2. The

numerical method and grid refinement procedure were

the same as in Section 2.

The optimization of geometry proceeded in two

phases. In the first, we held H=L and optimized H0=L0.

The minimized dimensionless hot spot temperature

ðbTmaxÞmin defined based on Eq. (13) is reported in Fig. 11.

The corresponding optimal internal aspect ratio is

shown in Fig. 12. In the second phase of numerical

simulation we repeated the first phase for many values of

H=L, as summarized in Figs. 11 and 12. We found that

the overall thermal resistance increases monotonically
Fig. 11. The effect of the external shape on the minimized

global thermal resistance when the body is heated externally.



Fig. 12. The effect of the external shape on the optimal shape

of the lateral intrusion when the body is heated externally.

Fig. 13. Correlation of the results for the optimal internal

shape when the body is heated externally.

Fig. 14. First construct of intrusions arranged as a T .
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with H=L, and that an optimal H=L does not exist when

H0=L0 has already been optimized.

It is interesting to compare the present results (Figs.

11 and 12) with the corresponding curves for the body

heated internally (Figs. 4 and 5). The trends are the

same. In particular, the optimized internal aspect ratio

has practically the same value in both cases. This point is

made more clearly in Fig. 13, which is nearly the same as

Fig. 6. The optimized geometry is indeed robust: it is

relatively insensitive to how the body is heated.
5. First construct

One direction in which the optimization of intrusion

geometry can be pursued is that of increasing the com-
plexity of the growing structures, in spaces that grow as

they are cooled by expanding flow structures. When the

heat generated by the volume is removed through one

port, and when the smallest volume element size is fixed,

the optimization of geometry generates a tree-shaped

flow structure [1]. The simplest tree-shaped structure is a

‘‘first construct’’, or an optimized assembly of elemental

volumes. The simplest first construct is the T-shaped tree

[16].

Fig. 14 shows the T-shaped intrusion formed by a

�stem’ intrusion (L1 � D1) that branches into two ele-

mental intrusions (L0 � D0). The optimization of the

elemental intrusion formed the subject of Sections 2–4.

In Fig. 14, the global size of the construct (HL ¼ A) is
fixed. The solid material has the conductivity k and

generates heat volumetrically at the uniform rate q000.
The perimeter of the HL rectangle is insulated. The

surface of the cavity is isothermal at Tmin. The hot spot

of temperature Tmax occurs at one or more points in the

solid. The objective continues to be the minimization of

the global thermal resistance eTmax, which is defined the

same way as in Eq. (5).

The geometry of the T-shaped construct is subjected

to two constraints, the volume fraction occupied by the

cavity

/ ¼ 2L0D0 þ ðL1 � D0=2ÞD1

HL
ð16Þ

and the volume fraction occupied by the rectangle de-

fined by the T ,
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w ¼ 2L0ðL1 þ D0=2Þ
HL

ð17Þ

The structure has three degrees of freedom, which are

represented by the ratios H=L, L0=L1 and D0=D1. In the

following sequence of optimization results we fixed

H=L ¼ 1, optimized L0=L1 by minimizing eTmax, and then

repeated the optimization for other values of D0=D1.

Fig. 15 shows that the results of the optimization

with respect to L0=L1 are practically insensitive to

changes in D0=D1. A weak effect emerges when / be-

comes greater than 0.1, as shown in Figs. 16 and 17.

There is no optimum with respect to D0=D1. The mini-
Fig. 15. The effect of the ratio D0=D1 on the minimized global

thermal resistance, and on the optimized lengths ratio.

Fig. 16. The effect of the ratio D0=D1 and / on the minimized

global thermal resistance.

Fig. 17. The behavior of the optimized geometry as / and the

ratio D0=D1 vary.

Fig. 18. The effect of w and D0=D1 on the minimized global

resistance.
mized global resistance and the optimized lengths ratio

decrease as / increases.

Figs. 18–20 show the effect of w on the optimization

results sampled in Fig. 14. The minimized global resis-

tance decreases as the T-shaped cavity grows, i.e. as w
increases (Fig. 18). At the same time, the aspect ratio

ðL0=L1Þopt increases. This trend is presented in Figs. 19

and 20.
6. Conclusions

Several conclusions and ideas for future research

emerged from this study. First is the surprisingly tight

correlation of the numerical results for ðH0=L0Þopt,



Fig. 19. The behavior of the ratio (L0=L1Þopt when w and D0=D1

change. Fig. 21. The optimal penetration distance of the lateral intru-

sion.
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cf. Figs. 6 and 13. We found based on pure observation

that the ðH0=L0Þvalues are such that the group shown on

the ordinate of Figs. 6 and 13 is equal to 1 when / is of

order 0.1 or smaller,

ðH0=L0Þopt
/H=L

� 1 ð18Þ

Because / ¼ H0L0=ðHLÞ, this correlation is the same as

L
L0

� �2

� 1 ð19Þ

Fig. 21 shows that correlation (19) is valid when the

external aspect ratio of the conducting body is H=L < 1.

The lateral cavity reaches its best shape when it pene-

trates the body almost completely. This conclusion is

valid for both configurations, internal heating (Fig. 1)

and external heating (Fig. 10). Future work may extend

this investigation to the more general case where the

heat transfer on the internal surface of the cavity is ac-

counted for by a constant heat transfer coefficient, that
Fig. 20. The optimal configurations obtained when D
is by a proportionality between the heat flux and the

temperature difference between the cavity wall and the

fluid that bathes the cavity.

We can compare the performance of the elemental

volume showed in Fig. 1 with the performance of the

first construct drawn in Fig. 14 under the same thermal

conditions, uniform heat generation, and the same vol-

ume fraction occupied by the cavity, /. Fig. 2 shows the

behavior of the global thermal resistance, eTmax, when the

external shape of the body is squared, H=L ¼ 1, and

/ ¼ 0:1. Fig. 18 illustrates that the T-shaped configu-

ration, the more complex one, performs better than the

finger-shaped cavity of Fig. 2. This means that its min-

imized global thermal resistance is smaller than the one

shown in Fig. 2. This performance improves when w
increases, i.e., when the T-shaped cavity has more free-

dom to vary. The best T-shaped cavity configuration

performs approximately 29% better than the best finger-

shaped configuration.
0=D1 ¼ 1, / ¼ 0:1, and w varies from 0.3 to 0.6.
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